On quasisymmetry (P-symmetry) groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 11805
(http://iopscience.iop.org/0305-4470/11/5/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:50

Please note that terms and conditions apply.

On quasisymmetry (P-symmetry) groups

T S G Krishnamurty, L S R K Prasad and K Rama Mohana Rao
Department of Applied Mathematics, Andhra University, Waltair 530003, India

Received 20 June 1977, in final form 23 November 1977

Abstract

A general method of obtaining quasisymmetry (P-symmetry) groups, using the concept of semi-direct products, is established. Using the ideas of little groups and their allowable irreducible representations, a new method of association of minor quasisymmetry groups with the irreducible representations of the generator groups is developed. Two concrete examples of diagrammatic representations of objects possessing the symmetry of minor quasisymmetry groups, when viewed as coloured groups, are given.

1. Introduction

The concept of antisymmetry was introduced into the study of crystallographic point groups and space groups by Shubnikov (1951) translated in Shubnikov and Belov (1964). The interpretation of antisymmetry as two-colour symmetry has led to the idea of polychromatic symmetry (Belov and Tarkhova 1956). Many extensions of this concept of antisymmetry were made, among which cryptosymmetry (Niggli and Wondratschek 1960, Wondratschek and Niggli 1961, Wittke 1962) is a fundamental one. Zamorzaev (1967) introduced the concept of quasisymmetry (or P-symmetry) and brought all the important earlier generalisations of antisymmetry, including cryptosymmetry, into its fold. Through his fundamental quasisymmetry theorem, Zamorzaev (1967) gave a method of deriving all groups of quasisymmetry from the generating groups. The 58 double coloured groups and the 18 polychromatic groups are just full P-symmetry minor groups with appropriate crystallographic point groups as generators and suitable cyclic groups (of permutations) of orders $2,3,4$ and 6 as the permutation group P.

It is well known that the 58 double coloured groups are associated with the 58 distinct one-dimensional alternating representations of the 32 crystallographic point groups (Indenbom 1959, Niggli and Wondratschek 1960, Bertaut 1968, Krishnamurty and Gopala Krishna Murty 1969). The 18 polychromatic groups are associated with the 18 pairs of one-dimensional complex representations of the crystallographic point groups (Niggli and Wondratschek 1960, Indenbom et al 1960, Krishnamurty and Applanarasimham 1972). Niggli and Wondratschek (1960) derived some more simple cryptosymmetries and associated them with the degenerate irreducible representations (IR) of the crystallographic point groups using the concept of kernel. Recently a method of constructing multicoloured groups to be associated with the two-dimensional IR of the crystallographic point groups was suggested (Krishnamurty and Applanarasimham 1975), considering various subgroups of index 2 , such that the chosen subgroups contain a pair of one-dimensional complex
representations. But on verification of the coloured elements obtained by them, it was found that they do not form a group. This defect has been rectified later by Appalanarasimham (1975).

In § 2 of this paper, a general method of obtaining quasisymmetry (P-symmetry) groups using the concept of semi-direct products is established. If G can be written as the semi-direct product of two groups S and $T(G=S \wedge T)$ and if S^{\prime} and T^{\prime} are two quasisymmetry groups with S and T as generators respectively, then $G^{\prime}=S^{\prime} \wedge T^{\prime}$ (if S^{\prime} and T^{\prime} satisfy all the requirements of the semi-direct product) is shown to be a quasisymmetry group with G as the generator. It is also shown that the nature of G^{\prime} (whether it is a major or minor or intermediate group) depends upon the nature of S^{\prime} and T^{\prime}. In § 3, using the little groups and their one-dimensional allowable irreducible representations (AIR) that induce the various IR of the crystallographic point groups, we associated the quasisymmetry minor groups with the IR of the generator groups. This method of obtaining the quasisymmetry groups and associating them with the IR of the generator groups differs from those of earlier investigators. We also give two concrete examples, by means of diagrammatic representations, of objects possessing the symmetry of minor quasisymmetry groups, when they are viewed as coloured groups. The notation adopted herein is mostly that of Bradley and Cracknell (1972).

2. Construction of quasisymmetry groups as semi-direct products

In this section we establish a general method of obtaining P-symmetry groups using the concept of semi-direct products and the fundamental quasisymmetry theorem of Zamorzaev (1967). In what follows, we outline the proofs for two cases only. The proofs for the remaining cases follow either in a similar way or they are essentially trivial.

Theorem 1. Let $G=S \wedge T, S^{\prime}$ be a full P-symmetry group with S as the generator and T^{\prime} be a full Q-symmetry group \dagger with T as the generator, where $P \neq Q \neq\{I\} \neq P$. If $G^{\prime}=S^{\prime} \wedge T^{\prime}$ and if S^{\prime} and T^{\prime} are of the same category (both major or both minor or both intermediate), then G^{\prime} is a full $P Q$-symmetry group of the same category with G as the generator. If $G^{\prime}=S^{\prime} \wedge T^{\prime}$ and if S^{\prime} and T^{\prime} are of different categories, then G^{\prime} is a full $P Q$-symmetry intermediate group with G as generator.

Proof. Let us suppose that both S^{\prime} and T^{\prime} are major groups. Any element of S^{\prime} is of the form $s_{i} p_{l}$, where $s_{i} \in S$ and $p_{l} \in P$. Similarly any element of T^{\prime} is of the form $t_{F} q_{m}$, where $t_{j} \in T$ and $q_{m} \in Q$. Any element of $G^{\prime}=S^{\prime} \wedge T^{\prime}$ is of the form $s_{i} p_{i} t_{j} q_{m}=s_{i} t_{i} p_{i} q_{m}$. As $s_{i} p_{i}$ vary over S^{\prime}, s_{i} vary over S and p_{i} vary over P. Similarly as $t_{j} q_{m}$ vary over T^{\prime}, t_{j} vary over T and q_{m} over Q. This implies that $s_{i} t_{j}$ vary over G and $p_{1} q_{m}$ vary over $P Q\left(\equiv P^{\prime}\right.$ say $)$. Thus, G^{\prime} is a full $P Q$-symmetry group with G as generator. Also by definition (Zamorzaev 1967), Q^{\prime} is that subgroup of G^{\prime} with elements of the form $E p_{1} q_{m}$ where $p r q_{m} \in P Q$. $s_{i} t_{j} p q_{m} \in Q^{\prime} \Rightarrow s_{i} t_{i}=E \Rightarrow s_{i}=E$ and $t_{j}=E$. Thus $Q^{\prime}=$ $\left\{E p_{1} q_{m} / p_{1} q_{m} \in P Q\right\}$. In other words $Q^{\prime}=G^{\prime} \cap P^{\prime}=P^{\prime}$. Therefore G^{\prime} is a full $P Q$ symmetry major group with G as generator. If P is invariant with respect to conjugation with every element of Q, then S^{\prime} and T^{\prime} satisfy the conditions for semi-direct
\dagger ' Q-symmetry group' means, throughout this paper, that the underlying group of permutations in the corresponding quasisymmetry group is Q. This should not be misunderstood as the non-commutative version of coloured symmetry (Q-symmetry) considered in the resumé of the classic book by Shubnikov and Koptsik (1974).
product since their symmetry parts, namely S and T, already satisfy the conditions for the semi-direct product.

Now suppose that both S^{\prime} and T^{\prime} are minor groups. Then from the fundamental quasisymmetry theorem (Zamorzaev 1967), we have

$$
S^{\prime}=\bigcup_{i} s_{i} H p_{i}, \quad s_{i} \in S, p_{i} \in P \quad \text { and } \quad s_{i} H \xrightarrow{f} p_{i}
$$

where $S / H \stackrel{f}{\cong} P$. Similarly

$$
T^{\prime}=\bigcup_{j} t_{j} \mathscr{K} q_{j}, \quad t_{i} \in T, q_{i} \in Q \quad \text { and } \quad t_{j} \mathscr{K} \xrightarrow{g} q_{i}
$$

where $T / \mathscr{K} \stackrel{\mathrm{g}}{\cong} Q$. Any element of G^{\prime} is of the form

$$
s_{i} h_{a} p_{i} t_{j} k_{b} q_{j}=s_{i} h_{a} t_{j} k_{b} p_{i} q_{j}, \quad \text { where } h_{a} \in H, k_{b} \in \mathscr{K} .
$$

As $s_{i} h_{a} p_{i}$ vary over $S^{\prime}, s_{i} h_{a}$ vary over S and p_{i} vary over P. Similarly as $t_{j} k_{b} q_{j}$ vary over $T^{\prime}, t_{j} k_{b}$ vary over T and q_{i} vary over Q. Hence it follows that G^{\prime} is a full $P Q$ symmetry group with G as generator. By definition Q^{\prime} is that subgroup of G^{\prime} with elements of the form $E p_{i} q_{j}$, where $p_{i} q_{i} \in P Q . s_{i} h_{a} t_{i} k_{b} p_{i} q_{j} \in Q^{\prime} \Rightarrow s_{i} h_{a} t_{i} k_{b}=E \Rightarrow s_{i} h_{a}=$ $E, t_{j} k_{b}=E \Rightarrow s_{i}=E, h_{a}=E, t_{j}=E, k_{b}=E \Rightarrow p_{i}=I$ and $q_{j}=I$ from the isomorphisms f and g. Thus, $Q^{\prime}=\{E I\}$. Therefore G^{\prime} is a full $P Q$-symmetry minor group with G as generator. Adopting a similar argument all the remaining cases of the theorem can easily be disposed of.

However, when $Q=P \neq\{I\}$, excepting the following modifications, all the other results cited in theorem 1 remain true.
(i) If both S^{\prime} and T^{\prime} are intermediate groups and if $G^{\prime}=S^{\prime} \wedge T^{\prime}$, then, G^{\prime} may be an intermediate group or a major full P-symmetry group with G as generator.
(ii) If one of S^{\prime} and T^{\prime} is a major group and the other a minor group, and if $G^{\prime}=S^{\prime} \wedge T^{\prime}$, then G^{\prime} is a full P-symmetry major group with G as generator.
(iii) If one of S^{\prime} and T^{\prime} is a major group and the other an intermediate group, and if $G^{\prime}=S^{\prime} \wedge T^{\prime}$, then G^{\prime} is a full P-symmetry major group with G as generator.

If S^{\prime} is a full P-symmetry group with $P=\{I\}$, then S^{\prime} is a major group as well as a minor group. We shall refer to such a group as a major/minor group. In such case we have the following modifications which can easily be established.

Theorem 2. If one of S^{\prime} and T^{\prime} of theorem 1 is a major/minor group, and the other a major or a minor or an intermediate group, and if $G^{\prime}=S^{\prime} \wedge T^{\prime}$, then G^{\prime} is a major or minor or intermediate group respectively with G as generator. If both S^{\prime} and T^{\prime} are major/minor groups and if $G^{\prime}=S^{\prime} \wedge T^{\prime}$, then G^{\prime} is also a major/minor group with G as generator.

3. Association of the minor quasisymmetry groups with the IR of the generator groups

Niggli and Wondratschek (1960) constructed 58 alternating, 18 cyclic, 23 two-dimensional and 7 three-dimensional simple cryptosymmetries against the one-dimensional alternating, one-dimensional complex, two- and three-dimensional IR respectively of the 32 crystallographic point groups, using the concept of kernel. In this section, a new method of construction of minor quasisymmetry groups and associating them
with the IR of the generator groups is developed, using the concept of semi-direct product and the idea of little groups and their one-dimensional AIr. Two concrete examples, by means of diagrammatic representations, of objects possessing the symmetry of minor quasisymmetry groups, when viewed as coloured groups, are given.

It is well known (Altmann 1963a, b) that $D_{3}=C_{3} \wedge C_{2}$, where the point group C_{3} consists of elements E, C_{3}^{+}and C_{3}^{-}and the point group C_{2} has the elements E, C_{23}^{\prime}. The group $C_{3}^{\prime}: E I, C_{3}^{+}$(123), C_{3}^{-}(132), is a full P-symmetry minor group with C_{3} as generator and the permutations I, (123) and (132) as P. The group $C_{2}^{\prime}: E I, C_{23}^{\prime}$ (13), is a full Q-symmetry minor group with C_{2} as generator and the permutations I, (13) as Q. These groups C_{3}^{\prime} and C_{2}^{\prime} satisfy the conditions for semi-direct product and hence we can write $D_{3}^{\prime}=C_{3}^{\prime} \wedge C_{2}^{\prime}$, which consists of elements $E I, C_{3}^{+}$(123), C_{3}^{-}(132), C_{23}^{\prime} (13), C_{22}^{\prime} (23), C_{21}^{\prime} (12). By virtue of theorem 1 of $\S 2, D_{3}^{\prime}$ is a full $P Q$ symmetry minor group with D_{3} as the generator. We know that the group C_{3}^{\prime} is associated with the one-dimensional complex representation ${ }^{1} E$ of C_{3} (Indenbom et al 1960, Krishnamurty and Appalanarasimham 1972, Niggli and Wondratschek 1960). C_{3} is a little group of D_{3} and the one-dimensional complex representation ${ }^{1} E$ of C_{3}, which is an AIR, induces the two-dimensional IR E of D_{3} (Altmann 1963a). As $D_{3}^{\prime}=C_{3}^{\prime} \wedge C_{2}^{\prime}$ and since C_{3}^{\prime} is associated with the one-dimensional complex representation ${ }^{1} E$ of C_{3} which in turn induces the two-dimensional Ir E of D_{3}, we associate D_{3}^{\prime} with this two-dimensional IR E of D_{3}. This method of association of the quasisymmetry minor group obtained with the IR of the generator group differs from that of Niggli and Wondratschek (1960), for their method of association was based on the kernel (which is the identity element E alone in this cited example) whereas ours is based on the little group (which is the point group C_{3} in the same example).

As an example of an object possessing the symmetry of this minor quasisymmetry group D_{3}^{\prime}, we consider the equilateral triangle (figure 1), where the indices 1,2 and 3 denote the three different colours. $\mathrm{COA}, \mathrm{AOB}$ and BOC are three triangular plates, forming the equilateral triangle ABC , coloured on both sides with colours 1,2 and 3 respectively. With the twofold axes as shown in figure 1 , one can easily see that D_{3}^{\prime} is a symmetry group of the coloured equilateral triangle.

As our second example, we choose the point group $T . T=D_{2} \wedge C_{3}$, where the group D_{2} has the elements $E, C_{2 x}, C_{2 y}, C_{2 z}$ and the group C_{3} has $E, C_{31}^{+}, C_{31}^{-}$. $D_{2}^{\prime}: E I, C_{2 x}(13)(24), C_{2 y}(12)(34), C_{2 z}(14)(23)$, is a full P-symmetry minor group with D_{2} as the generator and with P consisting of permutations I, (13) (24), (12) (34) and (14) (23). $C_{3}^{\prime}: E I, C_{31}^{+}(134), C_{31}^{-}(143)$, is a full Q-symmetry minor group with C_{3} as the generator and with Q consisting of permutations I, (134) and (143). Since D_{2}^{\prime} and C_{3}^{\prime} satisfy the conditions of the semi-direct product, $T^{\prime}=D_{2}^{\prime} \wedge C_{3}^{\prime}$ has

Figure 1.
the following elements: $E I, C_{2 x}(13)(24), C_{2 y}(12)(34), C_{2 z}(14)(23), C_{31}^{+}$(134), C_{32}^{+}(142), C_{33}^{+}(123), C_{34}^{+}(243), C_{31}^{-}(143), C_{32}^{-}(124), C_{33}^{-}(132), C_{34}^{-}(234). T^{\prime} is a full $P Q$-symmetry minor group with T as generator. As D_{2}^{\prime} is equivalent (in the sense of Niggli and Wondratschek 1960) to the double coloured group $2^{\prime} 2^{\prime} 2$ of D_{2}, associated with the alternating representation B_{1} of D_{2} (Indenbom 1959, Niggli and Wondratschek 1960, Bertaut 1968, Krishnamurty and Gopala Krishna Murty 1969), we associate D_{2}^{\prime} with the IR B_{1} of D_{2}. We also note that D_{2} is a little group of T and the one-dimensional AIR B_{1} of D_{2} induces the three-dimensional IR T of the point group T. As $T^{\prime}=D_{2}^{\prime} \wedge C_{3}^{\prime}$ and D_{2}^{\prime} is associated with the one-dimensional AIR B_{1} of D_{2}, which induces the three-dimensional IR T of the point group T, we associate T^{\prime} with the three-dimensional IR of the group T. Here Niggli and Wondratschek (1960) made use of the kernel consisting of the identity element alone whereas our association is based on the little group D_{2}.

As an example of an object possessing the symmetry of T^{\prime}, we consider the regular tetrahedron (figure 2).

Figure 2.

In the regular tetrahedron $\mathrm{CAB}^{\prime} \mathrm{D}^{\prime}$, the faces $\mathrm{ACD}^{\prime}, \mathrm{B}^{\prime} \mathrm{D}^{\prime} \mathrm{A}, \mathrm{B}^{\prime} \mathrm{D}^{\prime} \mathrm{C}$ and ACB^{\prime} are coloured with four different colours numbered as $1,2,3$ and 4 respectively. With the rotation axes as shown in figure 2 , it can be seen that T^{\prime} is a symmetry group of this coloured regular tetrahedron. In this way we are able to construct the minor quasisymmetry groups (simple cryptosymmetries) against all the 23 two-dimensional IR of the crystallographic point groups and the 3 three-dimensional IR of the cubic point groups T and T_{h}, using the concepts of semi-direct products and little groups.

As we wanted our AIR to be always one dimensional for all the degenerate IR of the crystallographic point groups (Krishnamurty et al 1977), both ways of expressing the point group O as the semi-direct product, i.e. $O=T \wedge C_{2}^{\prime \prime}$ and $O=D_{2} \wedge D_{3}^{\prime}$ (where primes denote non-standard settings), are not useful for our purpose because none of the one-dimensional IR of T or D_{2} induce the three-dimensional IR of O. On the other hand it may be noted (Bradley and Cracknell 1972, Krishnamurty et al 1977) that D_{4}^{\prime} (non-standard setting of the point group D_{4}) is a little group of O and the 2 one-dimensional AIR A_{2} and B_{2} of D_{4}^{\prime} induce respectively the 2 three-dimensional IR T_{1} and T_{2} of O. The group ($\left.D_{4}^{\prime}\right)^{\prime}: E, C_{2 x} R_{2}^{\prime}, C_{2 y} R_{2}, C_{2 z} R_{2} R_{2}^{\prime}, C_{2 d} R_{2}^{\prime \prime}$, $C_{4 x}^{+} R_{2}^{\prime \prime} R_{2}, C_{4 x}^{-} R_{2}^{\prime \prime} R_{2}^{\prime} R_{2}, C_{2 f} R_{2}^{\prime \prime} R_{2}^{\prime}$, where $R_{2}=(12)(34), R_{2}^{\prime}=(13)(24)$ and $R_{2}^{\prime \prime}=$ (24), is a quasisymmetry minor group equivalent (in the sense of Niggli and Wondratschek 1960) to the ordinary double coloured group $4^{\prime} 2^{\prime} 2$ of D_{4}^{\prime}, associated with the IR
B_{2} of D_{4}^{\prime} (Indenbom 1959, Niggli and Wondratschek 1960, Bertaut 1968, Krishnamurty and Gopala Krishna Murty 1969). We therefore associate ($\left.D_{4}^{\prime}\right)^{\prime}$ with the one-dimensional AIR B_{2} of D_{4}^{\prime}. A coset decomposition of the point group O relative to D_{4}^{\prime} is $O=E D_{4}^{\prime} \cup C_{31}^{+} D_{4}^{\prime} \cup C_{31}^{-} D_{4}^{\prime}$. A quasisymmetry minor group with the group of coset representatives as generator is $C_{3}^{\prime}: E I, C_{31}^{+}$(134), C_{31}^{-}(143). The product $\left(D_{4}^{\prime}\right)^{\prime} C_{3}^{\prime}$, when expanded as the product of two complexes, is a full P-symmetry minor group with O as generator and $P=S_{4}$, the symmetric group on 4 symbols $1,2,3$ and 4 , as the permutation group. As $\left(D_{4}^{\prime}\right)^{\prime}$ is associated with the one-dimensional AIR B_{2} of D_{4}^{\prime}, which induces the three-dimensional IR T_{2} of O, we associate this quasisymmetry minor group $\left(D_{4}^{\prime}\right)^{\prime} C_{3}^{\prime}$ with the IR T_{2} of O. It may be noted that $\left(D_{4}^{\prime}\right)^{\prime} C_{3}^{\prime}=$ $T^{\prime} \wedge\left(C_{2}^{\prime \prime}\right)^{\prime}$, where T^{\prime} is the quasisymmetry minor group already associated with the three-dimensional IR T of the point group T and $\left(C_{2}^{\prime \prime}\right)^{\prime}$ with elements $E I, C_{2 d}$ (24) is a quasisymmetry minor group with $C_{2}^{\prime \prime}$ as generator. Here $C_{2}^{\prime \prime}$ (non-standard setting of the point group C_{2}) has the elements E and $C_{2 d}$.

Similarly (D_{4}^{\prime} ' $^{\prime \prime}: E, C_{4 x}^{+} R_{4}, C_{2 x} R_{4}^{2}, C_{4 x}^{-} R_{4}^{3}, C_{2 z} R_{2}, C_{2 y} R_{4}^{2} R_{2}, C_{2 d} R_{4}^{3} R_{2}, C_{2 f} R_{4} R_{2}$, where $R_{2}=(16)(25)(38)(47), R_{4}=(1234)(5678)$, is a quasisymmetry minor group associated with the one-dimensional AIR A_{2} of D_{4}^{\prime}. The product ($\left.D_{4}^{\prime}\right)^{\prime \prime} C_{3}^{\prime \prime}$, where $C_{3}^{\prime \prime}$ has the elements $E I, C_{31}^{+}(168)(274), C_{31}^{-}(186)(247)$, when expanded as the product of two complexes, is a quasisymmetry minor group and can be associated with the three-dimensional IR T_{1} of O. It can be verified that $\left(D_{4}^{\prime}\right)^{\prime} C_{3}^{\prime}$ is equivalent to $\left(D_{4}^{\prime}\right)^{\prime \prime} C_{3}^{\prime \prime}$ and thus we have only one quasisymmetry minor group against the 2 three-dimensional IR T_{1} and T_{2} of the point group O. Since a similar situation prevails in the case of the three-dimensional IR of the point groups T_{d} and O_{h}, we have in total only seven distinct quasisymmetry minor groups against the 11 threedimensional IR of the cubic point groups. This is in complete agreement with Niggli and Wondratschek (1960). In a similar way using the concepts of semi-direct products and little groups all the 58 double coloured groups and the 18 polychromatic groups can be obtained against the one-dimensional alternating and the one-dimensional complex representations respectively.

4. Discussion

The results of $\S 2$ enable us to obtain all the quasisymmetry groups, with a group G as generator, as semi-direct product of smaller quasisymmetry groups with S and T as generators, whenever $G=S \wedge T$. There are many groups which can be written as semi-direct product of their subgroups. Altmann (1963a, b, 1967) showed that all point groups and all the symmetry groups of non-rigid molecules can be represented as semi-direct products. Shubnikov and Koptsik (1974) have obtained the colour groups $G^{(p)}$, isomorphic with the crystallographic groups G, by finding the normal subgroups H of G and forming the direct, semi-direct or quasiproduct of H with the generating coloured groups $G^{(p) *}$ or with the groups $G^{(p) *}\left(\bmod G_{1}^{*}\right)$. In our method both the factors in the semi-direct product are quasisymmetry groups.

The method of associating minor quasisymmetry groups with the IR of the generator groups, using little groups and their one-dimensional AIR, has the following interesting consequences. Firstly, it is easier to deal with a one-dimensional ir than with a degenerate IR directly. Secondly, for any magnetic or physical property, the number of independent constants one gets against a degenerate IR is the same as that occurring against the one-dimensional AIR of the appropriate little group, that induces
the degenerate IR (Krishnamurty et al 1977). The equality of the above mentioned numbers is a consequence of the well known Frobenius reciprocity theorem.

An example of physical applications of the quasisymmetry groups is that of magnetic symmetry (Naish 1963, Zamorzaev 1967). 'The multiplicative groups' constructed by Naish (1963) are nothing but the quasisymmetry groups. In describing the magnetic symmetry of screw (helicoidal) structures, where the traditional magnetic groups (Shubnikov groups) are not suitable, these quasisymmetry (multiplicative) groups are found to be of much use.

Acknowledgments

The authors take this opportunity to express their sincere thanks to the referees for their constructive suggestions. They are also thankful to Professor T Venkatarayudu, Emeritus Professor, for his helpful discussions on this subject. One of the authors (KRR) is grateful to the UGC of India for the award of a Junior Research Fellowship.

References

Altmann S L 1963a Phil. Trans. R. Soc. A 255 216-40

- 1963b Rev. Mod. Phys. 35 641-5
_- 1967 Proc. R. Soc. A 298 184-203
Appalanarasimham V 1975 PhD Thesis Andhra University
Belov N V and Tarkhova T N 1956 Kristallogr. 14-13 (1956 Sov. Phys.-Crystallogr. 1 5-11)
Bertaut E F 1968 Acta Crystallogr. A 24 217-31
Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids (Oxford: Clarendon)
Indenbom V L 1959 Kristallogr. 4 619-21 (1960 Sov. Phys.-Crystallogr. 4578-80)
Indenbom V L, Belov N V and Neronova N N 1960 Kristallogr. 5 497-500 (1961 Sov. Phys.-Crystallogr. 5 477-81)
Krishnamurty T S G and Appalanarasimham V 1972 J. Math. \& Phys. Sci. 6 297-301
-_ 1975 J. Math. \& Phys. Sci. 9 253-7
Krishnamurty T S G and Gopala Krishna Murty P 1969 Acta Crystallogr. A 25 329-31
Krishnamurty T S G, Prasad L S R K and Rama Mohana Rao K 1977 J. Math. \& Phys. Sci. in the press
Naish V E 1963 Izv. Akad. Nauk, Ser. Fiz. 271496 (1963 Bull. Acad. Sci. USSR, Phys. Ser. 27 1468-75)
Niggli A and Wondratschek H 1960 Z. Kristallogr. Kristallogeom. 114 215-31
Shubnikov A V 1951 Symmetry and Anti-Symmetry of Finite Figures (Moscow: USSR Academy of Sciences)
Shubnikov A V and Belov N V 1964 Coloured Symmetry (Oxford: Pergamon)
Shubnikov A V and Koptsik V A 1974 Symmetry in Science and Art (New York: Plenum)
Wittke O 1962 Z. Kristallogr. Kristallogeom. 117 153-65
Wondratschek H and Niggli A 1961 Z. Kristallogr. Kristallgeom. 115 1-20
Zamorzaev A M 1967 Kristallogr. 12 819-25 (1968 Sov. Phys.-Crystallogr. 12 717-22)

